
F6. Background Processing (Advanced)
 One of the biggest differences between FaceIt and competing tools is the degree to which 
FaceIt, in combination with other modules, automatically handles nearly all window events.    
Most programmers using FaceIt, for example, will never write a single line of code to handle 
update events.    This aspect of FaceIt programming makes it especially easy for a 
programmer to implement background processing and switching under MultiFinder or 
System 7.

What To Do
    First, a SIZE resource (like that discussed in the "Finder Resources" topic) with its "Can 
background" bit set must be made a part of your program file for background processing to 
work properly.    Second, you must add GetNextEvent (or WaitNextEvent) calls to the program
code that is to run in the background, and deal properly with the results of these calls.    The 
tricky part of this is in determining how often to call GetNextEvent.    If you call GetNextEvent
too often, then your background processing will be unnecessarily slowed, whereas too few 
GetNextEvents makes the top application appear sluggish.

When To Do It
    The simplest solutions to the question of whether and how often to call GetNextEvent (or 
WaitNextEvent) to support background processing and switching are either (a) let the user 
decide, or (b) make the call after a fixed number of loops or ticks (1/60 seconds) have 
elapsed.    In many cases the background task will involve a loop within which you can place 
a GetNextEvent call.    But rather than slowing things down by calling GetNextEvent every 
time through the loop, you should instead check a flag, loop index, and/or the current tick 
count (returned by TickCount) to determine whether it is time to call GetNextEvent.    Such a 
flag can be made a function of whether or not you are running under MultiFinder, and 
whether or not the user wants to sacrifice processing speed by supporting background 
processing and switching.    The shared variable fEnvFlags will have its second bit set if 
MultiFinder temporary memory allocation routines are implemented (still a good indicator of 
whether MultiFinder is in use - see "fRec Record" in ViewIt Guide for more info about 
fEnvFlags). An example of background processing is presented in the fDemoXY program.

FaceIt's Role
    If all you had to do, to support background processing and switching, was decide where 
and when to call GetNextEvent or WaitNextEvent, then FaceIt wouldn't have much to do with
it.    The potential programming nightmare, however, comes not in making these calls, but 
rather in dealing with the Update or SuspendResume (switching) events that your program 
can be fed while you are deep in your code doing some serious number-crunching.    
Obviously, you haven't written that code to deal with Update or SuspendResume events!    
That's where FaceIt comes to the rescue.    When you get such an event, you just pass it to 
FaceIt via DoEvnt to tell it to handle the event.    These events usually arise when windows 
from another application are moved over your program windows, and when the user 
attempts to switch between applications.

An Example
    The following Pascal code fragment illustrates how simple FaceIt makes your handling of 
Update and SuspendResume events.    The example code checks whether GetNextEvent 
should be called based upon a loop counter, "i", and upon a flag, "doBack", which could be 
either user-defined and/or made a function of the environment you are running under.    If 
GetNextEvent returns true, and the event is an Update (6) or SuspendResume (15) event, 
then FaceIt is called to handle the event.    The event record gets passed to FaceIt via the 
fEvent variable in fRec.
 ...
 if doBack then



    if (i mod 50 = 0) then
      if GetNextEvent(-1, fEvent) then
        if (fEvent.what=6) or (fEvent.what=15) then
          FaceIt(nil,DoEvnt,0,0,0,0);
 ...
Note that this code works equally well whether the program is the front application or is in 
the background.    In general, your program does not need to be aware of whether it is in the 
foreground or background, switched in or switched out.    (If you do find a reason for needing 
to know this, check the fRec variable fSleep.    If fSleep = fBackSleep, then you are operating 
in the background.)
      Although the exact logic that surrounds a GetNextEvent call will depend entirely on your 
programming objectives, the overall approach is always the same:    a decision is made 
whether or not to call GetNextEvent based on some program, user, and/or environmental 
condition, GetNextEvent gets called, and all Update and SuspendResume events returned 
are passed to FaceIt via DoEvnt.

Other Events
    The flip side of using GetNextEvent (or WaitNextEvent) to support background processing 
and switching is that this call cannot be used for other purposes without also checking for 
Update and SuspendResume events.    This means that you must either (a) always check for 
Update & SuspendResume events after calling GetNextEvent, or (b) find a way to avoid 
using GetNextEvent when you don't want other apps to get background time, nor any 
switching to occur.

The first approach uses GetNextEvent in a manner like that shown above, but adds one or 
more statements that check for some other event of interest.    A typical use of this approach
is to support exiting a time-consuming routine, and a simple event to watch for is an autokey
(5) event which occurs when the user holds a key down:
 if GetNextEvent(-1, fEvent) then
    if (fEvent.what=6) or (fEvent.what=15) then
      FaceIt(nil,DoEvnt,0,0,0,0)
    else if (fEvent.what = 5) then
      [exit time-consuming routine]
This approach works well when your primary purpose for calling GetNextEvent is to support 
background processing.
    The second approach, that of avoiding GetNextEvent calls, makes use of toolbox calls such
as Button or GetKeys to directly check for mouse clicks or key presses without ever calling 
GetNextEvent.    This approach is better suited for cases where you are interested primarily 
in the event, and not in supporting background processing.    When the desired state is 
detected, a FlushEvents call should also be made to remove the corresponding event from 
the event queue so that it does not get processed again by FaceIt.    A simple use of Button is
shown here, and the example program fDemoXY demonstrates the use of GetKeys.
 if Button then
    begin
      FlushEvents(62,0); remove spurious events
      [exit time-consuming routine]
    end
where the use of "62" when calling FlushEvents removes all mouse and key events that may 
have accumulated in the event queue.

WaitNextEvent?
    GetNextEvent is equivalent to calling WaitNextEvent with a sleep parameter of zero.    Zero
sleep is, in many cases, a reasonable value to use when the program is in the process of 
doing some computationally-intensive operation:    you're either in the background at the 
mercy of the System and other applications for processing time, and willing to take all the 
time you can get, or you're in the foreground in a time-consuming routine that you want to 



get through as quickly as possible.    Thus GetNextEvent works as well as WaitNextEvent for 
typical uses of background processing.
    The time when it makes sense to use a larger sleep value is when your program is in its 
main event loop, just waiting for an event to occur.    But that is FaceIt's job!    So FaceIt uses 
WaitNextEvent in its own event loop, passing it a sleep value equal to fFrontSleep when in 
the foreground, or fBackSleep when in the background (which have default values of 6 and 
8, respectively).


